
Lecture 4

Outline

1. 3-Good Case (Corlett-Hague rule)

2. Optimal taxation with any CRS technology: the Ramsey Rule again

3. Production efficiency with public and private production (any CRS technology;
following Auerbach, p. 100)

1. 3-Good Case (Corlett-Hague rule)

The 3-good case (numeraire plus two taxed goods) provides a little insight into
the structure of optimal taxes.

(a) With three goods, the Ramsey rule gives us:

2∑
i=1

tiSik = −θxk, k = 1, 2

Writing these conditions in matrix form:[
S11 S12

S21 S22

] [
t1
t2

]
= −θ

[
x1

x2

]

Using Cramer’s Rule:

t1 = −θ
1

∆

∣∣∣∣∣ x1 S12

x2 S22

∣∣∣∣∣
t2 = −θ

1

∆

∣∣∣∣∣ S11 x1

S21 x2

∣∣∣∣∣
where

∆ =

∣∣∣∣∣ S11 S12

S21 S22

∣∣∣∣∣
(b) We know from the analysis of θ after the derivation of the Ramsey rule

that θ ≥ 0. We will suppose

θ > 0

(c) The (full) Slutsky matrix is:

S =




S00 S01 S02

S10 S11 S12

S20 S21 S22



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Assume that S is negative semi-definite. This implies:

∆ ≥ 0

The result follows from the fact that ∆ is a 2nd order principal minor of S.
The kth order principal minor of a symmetric negative semi-definite matrix
is nonnegative if k is even and less than or equal to zero (“nonpositive”?)
if k is odd. See Simon and Blume (1994), Theorem 16.2 (p. 383).

i. Recall that if A is an n×n matrix, then the kth order principal minor
is the determinant of the k×k submatrix formed by deleting any n−k
columns and the corresponding rows.

ii. Myles says ∆ ≤ 0 (his p. 124) while Auerbach says ∆ > 0 (his p.
92). Auerbach is correct, under the assumption the matrix is negative
definite and not just semi-definite.

iii. You can replace “semi-definite” with “definite” and the weak inequal-
ities with strict inequalities in the above theorem.
With definite matrices we usually focus on the leading principal mi-
nors. Any principal minor can be made into a leading principal minor
of some matrix by permuting corresponding rows and columns. These
permutations will not affect the definiteness of the matrix.
Here’s a quick proof, just for the love of it. If E is the identity ma-
trix with certain rows permuted then E ′ is the identity matrix with
the corresponding columns permuted, EA is the matrix A with the
same rows permuted, and AE ′ is the matrix A with the corresponding
columns permuted. If x′Ax > 0 for all x �= 0, then given any y �= 0 we
must have y′(EAE ′)y = (y′E)A(E ′y) = (E ′y)′A(E ′y) > 0 so EAE ′ is
also positive definite.

(d) Returning to the formulas and using the fact:

− θ

∆
< 0

gives:

t1 > t2 ←→
∣∣∣∣∣ x1 S12

x2 S22

∣∣∣∣∣ <

∣∣∣∣∣ S11 x1

S21 x2

∣∣∣∣∣
←→ S22x1 − S12x2 < S11x2 − S21x1

Without loss we can measure quantities at the solution so that all post-tax
prices are 1. Then the homogeneity of compensated demand gives:

S10 + S11 + S12 = 0

S20 + S21 + S22 = 0
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Use these to eliminate S12 and S21 respectively, then divide both sides by
x1x2:

t1 > t2 ←→ S22x1 + (S10 + S11)x2 < S11x2 + (S20 + S22)x1

←→ S22

x2
+

S10

x1
+

S11

x1
<

S11

x1
+

S20

x2
+

S22

x2

←→ S10

x1
<

S20

x2

←→ εc
10 < εc

20

(e) Conclusion: at the optimum, the higher tax rate falls on the good with
the smaller compensated cross-elasticity with the untaxed good.

(f) This is sometimes expressed as, “the higher tax rate falls on the good that
is the relatively stronger compensated (or ‘Hicksian’) complement with the
untaxed good.”

This must be interpreted carefully. If for example:

0 < εc
10 < εc

20

then both goods are substitutes with the numeraire, it’s just that good 1
is less strong a substitute.

(g) It is not correct to interpret the rule as saying that taxing the relative
complement of the numeraire is an attempt to overcome “the restriction”
that we can’t tax the numeraire. The restriction t0 = 0 is without any loss
of generality.

A more interesting question is whether taxing the relative complement of
the numeraire is an attempt to overcome the restriction that we can tax
only net trades and not endowments. Note that allowing all components of
t to be chosen, or allowing t0 > 0 and requiring some other t0 = 0, would
still not indirectly tax any endowments. I will leave this as an analytical
puzzle.

Myles argues that this result is really just an artifact of the homogeneity
condition. It is not entirely clear what he means by this.

2. Optimal taxation with any CRS technology: the Ramsey Rule again

(a) Recall the general optimal tax problem:

Max V (q)
q1, ..., qn

subject to: F [x(q) + xG] = 0
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(b) Before solving this, we need a result from profit maximization. Recall that
aggregate output solves:

Max py
y

s.t. F (y) = 0

Using γ for the Lagrange multiplier:

L = py + γ[F (y)]

Therefore:

∂L
∂yi

= pi + γ
∂F

∂yi
= 0, i = 0, ..., n

so:

pi = −γ
∂F

∂yi
, i = 0, ..., n

If we take the ratio with the first equation then we have the n conditions:

pi

p0
=

∂F/∂yi

∂F/∂y0
, i = 1, ..., n

Using both ∂F
∂y0

= 1 (recall Lecture 2) and p0 = 1 gives:

pi =
∂F

∂yi

, i = 1, ..., n

(actually, it holds at i = 0 as well).

Attachment
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(c) We therefore have once again:∑n
i=1 tiSik

xk
= terms independent of k, k = 1, ..., n

(d) This has a similar equal percentage change interpretation as before, but it
is not quite identical.

i. The integrals are still evaluated from q0 to q0 + t.

ii. The new equilibrium prices, q1, are not q0 + t unless the tax is fully
shifted forward as before.

iii. Nevertheless, the formula says that compensated demand between the
original prices and q0+t (not the new equilibrium prices) must change
by the same percentage for all goods.

3. Production efficiency with public and private production (any CRS technology;
following Auerbach, p. 100).

(a) Recall, production is efficient if, for every pair of factors, the ratio of their
marginal products is the same in all lines of production.

It is then not possible to rearrange factors across lines of production to
increase one output without decreasing another.

(b) The production efficiency lemma says that under CRS, the optimal com-
modity tax vector will maintain production efficiency.

“The basic intuition is that as long we can tax all but one of the com-
modities, we can bring about any possible configuration of relative prices
consistent with a given level of revenue.” (Auerbach).

Thus, given a vector of prices that raise the required revenue without
production efficiency, it would be possible to raise the same revenue, have
more of some or all goods, and thereby increase the consumer’s utility.

(c) This implies the following:

i. Even if the government could levy partial factor taxes, it wouldn’t.
The government would not cause different firms to face different input
prices.

ii. Taxing an intermediate good in a particular industry would be equiv-
alent to a partial factor tax. So, even if the government could do this,
it wouldn’t.

(d) Now suppose that the government is also a producer. It purchases factors
on the open market, uses its own technology to produce goods, and then
sells the goods.
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This is in addition to still buying and donating xG to consumers. We keep
the two problems unlinked – linking them seems to generate a somewhat
more complicated problem.

Is production still efficient?

(e) Let s denote the government’s netput vector and G(s) = 0 its transforma-
tion function.

Note that we assume that the government chooses s to maximize the wel-
fare of the consumer. It does not act like a private firm, choosing s to
maximize profits taking p as given.

Are these different problems? There must be a literature about this!

(f) Any gap between the cost of what the government buys and the revenue
from what it sells increases the tax revenue that must be raised.

If revenue exceeds cost then ps > 0, so this is subtracted from the revenue
requirement. Similarly, if cost exceeds revenue, then ps < 0, and this is
also subtracted from the revenue requirement.

Market clearance is now:

x(q) + xG = y(p) + s

The government’s budget constraint is:

(q − p)[x(q) + xG] = qxG − ps

which reduces to:

(q − p)x(q) = pxG − ps

As before, Walras law for the model shows that the government’s budget
constraint is redundant.

i. It is always worth checking the accounting.
Premultiply market clearing by p and use py(p) = 0:

px(q) + pxG = py(p) + ps = ps

so:

−px(q) = pxG − ps

Using qx(q) = 0:

qx(q)− px(q) = (q − p)x(q) = pxG − ps

(g) The optimization problem is now:

Max V (q)
q1, ..., qn; s0, s1, ..., sn

subject to: F [x(q) + xG − s] = 0
G(s) = 0
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(h) Production should be efficient. For any two factors i and j we should have:

∂F/∂yi

∂F/∂yj
=

∂G/∂yi

∂G/∂yj

Page 7—Rothstein–Lecture 4–September 2006


