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1. The general problem

The government’s budget constraint is:

(q − p)[x[q, π(p)] + xG] = qxG

The left hand side is the tax revenue the government gathers. The right hand
side is the cost of its purchases.

(a) Note that the government cannot satisfy this constraint if people engage in
no net trades. If people just consume their endowments, then (q−p)(xG) =
qxG so −pxG = 0. This is impossible since all terms in xG are positive:
the government makes only purchases, it has no endowment to sell.

If people were inclined to consume their endowments, the optimal tax
vector would have to induce them not to.

(b) The general problem is easier to handle if we rewrite this to eliminate xG

from the left hand side. This gives (q − p)x[q, π(p)] = pxG.

The most general way of writing the optimal commodity tax problem is then:

Max V [q, π(p)]
q0, ..., qn; p0, ..., pn

subject to: xi(q) + xG
i = yi(p), i = 0, ..., n

(q − p)x[q, π(p)] = pxG

This, however, involves some redundancy and can be substantially simplified.
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2. Walras Law

Pre-multiply the set of equilibrium conditions by the producer price vector.
This gives:

px[q, π(p)] + pxG = py(p)

We have:

py(p) = π(p) = qx[q, π(p)]

The first equality is from the definition, the second is from the individual budget
constraint. So:

px[q, π(p)] + pxG = qx[q, π(p)]

Therefore:

pxG = qx[q, π(p)]− px[q, π(p)] = (q − p)x[q, π(p)]

Thus, the government’s budget constraint is redundant if we have all n + 1
equilibrium conditions.

In other words:

(a) We can drop the government’s budget constraint from the problem if we
have all n + 1 equilibrium conditions.

This is how it is usually used.

(b) Alternatively, we can drop one of the equilibrium conditions if we include
the government’s budget constraint.

3. Tax vector normalization (uses CRS)

Under the assumption of CRS (and the restriction to taxing only net trades),
one of the tax rates is redundant.

(a) To see the intuition, recall the labor-income model with profit income.
Consumption good is the numeraire. Suppose the government places a
tax on net trades of both labor supply and consumption. Let w be the
producer price of labor This is the gross wage since the producer buys
labor. We model what occurs if the gross wage falls by the full amount of
the tax. Then:

x =

[ −L
Y

]
q = p + t =

[
w + t0
1 + t1

]
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The budget constraint is qx = π(p), so in this case:

(w + t0)(−L) + (1 + t1)Y = π(p)

Rearranging gives:

Y =
π(p)

1 + t1
−
(

w + t0
1 + t1

)
(−L)

Because of profit income, the government needs both tax instruments to
fully control the budget constraint.

If the profit income were missing, however, the government could fully
control the constraint with just one tax.

Under CRS (given that we are taxing just net trades), one of the taxes is
redundant.

(b) More formally now.

Suppose there is profit income. Then indirect utility and demands depend
on both prices and income:

V [q, π(p)], x[q, π(p)]

These are homogeneous of degree zero in (q, p) jointly. consumer and
producer prices jointly. If we double all producer prices then profits double
(the profit function is homogenous of degree 1 in all prices), so if we also
double consumer prices then indirect utility and demands are unchanged
(they are homogeneous of degree zero in prices and income).

Supply still depends on producer prices alone:

y[(p)]

Supply is homogenous of degree zero in producer prices.

(c) We can arbitrarily set the consumer price of one good equal to “1” or the
producer price of one good equal to “1,” but not both in general.

Suppose q0 > 1 and we rescale all consumer and producer prices by q0.
Then indirect utility, demands, and supply are unchanged.

We now have q′0 = 1.

(d) If π(p) = 0 we can also independently rescale the producer prices. Indirect
utility and demands no longer depend on π(p). Supply is unaffected by
rescaling all prices.

Under CRS, then, and without any loss of generality we can assume p′0 = 1.
Therefore:

q′0 = p′0 = 1

which means that without any loss of generality:

t0 = 0
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(e) Note! The untaxed commodity may be a good for which we have an
endowment. There is still no loss of generality!

The fact that we do not tax a commodity with an endowment does not
imply we are foregoing a lump-sum tax. This was already implied by our
restriction to taxing just net trades.

What has just been shown is that, given the restriction to taxing net trades,
there is no further loss of generality (under CRS) to not taxing the good
with an endowment at all.

4. Problem I: general CRS technology

From our previous results, in the general problem:

(a) We know q0 = 1 and p0 = 1, so these do not appear as choice variables.

(b) We can eliminate the government’s budget constraint.

If we then substitute the market clearing conditions into the technology the
producer prices no longer appear. We therefore have:

Max V (q)
q1, ..., qn

subject to: F [x(q) + xG] = 0

This problem determines the demands that must be met. Given this, the gov-
ernment chooses producer prices so that firms will supply the required amount.
Those producer prices are determined by the demands and the technological
relationships derived earlier:

pi = p0
∂F/∂yi

∂F/∂y0
=

∂F

∂yi
, i = 1, ..., n

where we now use p0 = 1. We will return to this problem after considering the
case of linear technology.

5. Problem II: linear technology

(a) With a linear technology each derivative ∂F
∂yi

is a constant. These constants
then determine the equilibrium producer prices through:

pi =
∂F

∂yi
, i = 1, ..., n

So, technology determines the producer prices and these are fixed.
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It must be the case that all factor demand curves and all produced goods
supply curves are horizontal.

This is what Karl Marx was after – prices are determined independently
of demand!

Denote the equilibrium producer price vector by:

p∗

(b) Regarding linear technology:

i. In general equilibrium, CRS alone does not imply a linear technology.

ii. If labor is the only factor in production and all technologies are CRS,
then the production possibilities frontier (as a relationship among the
produced goods) is linear in every direction.

iii. For more general results on linear technology, see Kemp et al. (1978).

(c) If all producer prices are fixed, then consumer prices are the producer
prices plus taxes:

q = p∗ + t

With p∗ given and q determined by t, the market clearing conditions can be
dropped from the original problem. All that remains is the government’s
budget constraint.

Since both p∗ and xG are exogenous, we can eliminate p∗xG in the con-
straint and replace it with R, “revenue.”

i. Note! If producer prices change then we can not do this. A given
quantity of numeraire would purchase different quantities of goods
depending on equilibrium prices.

ii. Of course, if the government were not providing a vector of goods, but
were merely making a lump-sum return of numeraire, then we would
have a revenue constraint with just CRS.
The problem in which the government levies commodity taxes on a
single individual to make a lump-sum return of numeraire is less in-
teresting than the problem we consider.

(d) Our problem now becomes:

Max V (p∗ + t)
t1, ..., tn

subject to: tx(p∗ + t) = R

6. Ramsey rule for the linear technology model

(a) The derivation is attached.
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Attachment.

Two points to note:

i. We have V (p∗ + t) ≡ V (p∗0 + t0, ..., p
∗
n + tn) (of course t0 = 0), so using

the fact that tk appears only in the kth entry and enters additively:
∂V (p∗ + t)

∂tk
=

∂V

∂qk

∂qk

∂tk
=

∂V

∂qk

ii. Keep in mind that we have shown that at the optimal tax vector:∑n
i=1 Sikti

xk
< 0, k = 1, ..., n

This comes up again and again.

7. Interpretation of the Ramsey rule

(a) We need to analyze
∑n

i=1 Sikti, where:

Sik =
∂xc

i

∂qk
=

∂xc
k

∂qi
= Ski

(b) The following mathematics comes up again and again. The review is worth-
while.

At the most general level, we are given two vectors of consumer prices q(0),
and q(t). Intuitively, a path between the two is a mapping:

σ : [0, b] → �n+1

with:

σ(0) = q(0), σ(b) = q(t)

σ(τ ) = (q0(τ ), q1(τ ), ..., qn(τ ))

The most useful path for analytical purposes moves from one vector to the
other by traveling parallel to each axis one dimension at a time. Let us
call this path σ. We will not write it out in closed form. Instead, we will
write it as the collection of sub-paths:
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i = 0, ..., n

σi : [0, ti] → �n+1

σi(τ ) =




q0(t) + t0
...
qi−1(t) + ti−1

qi(t) + τ
qi+1(t)
...
qn(t)




Assuming fixed producer prices, this is just:

i = 0, ..., n

σi : [0, ti] → �n+1

σi(τ ) =




p∗0 + t0
...
p∗i−1 + ti−1

p∗i + τ
p∗i+1
...
p∗n
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Using basic theorems for line integrals of vector fields that happen to be
gradients of some function, we have (note that we use t0 = 0):

xc
k(p

∗ + t) − xc
k(p

∗) =
∫

σ
∇xc

kds

=
n∑

i=1

∫
σi

∇xc
kds

=
n∑

i=1

∫ ti

0
∇xc

k[σi(τ )]σ′
i(τ )dτ

=
n∑

i=1

∫ ti

0
∇xc

k[σi(τ )](0, ..., 0, 1, 0, ..., 0)dτ

=
n∑

i=1

∫ ti

0

∂xc
k(σi(τ ))

∂qi

dτ

=
n∑

i=1

∫ ti

0

∂xc
k(p

∗
0 + t0, ..., p

∗
i + τ, p∗i+1, ..., p

∗
n)

∂qi
dτ

=
n∑

i=1

∫ ti

0
Ski(p

∗
0 + t0, ..., p

∗
i + τ, p∗i+1, ..., p

∗
n)dτ

=
n∑

i=1

Ski

∫ ti

0
dτ

=
n∑

i=1

tiSki

=
n∑

i=1

tiSik

Notice:

i. The point at which the integrands are evaluated moves as we move
along the path.

ii. The third-to-last step uses the assumption that the Ski are constant
in the relevant range.

iii. The last step uses the symmetry of the Slutsky matrix.

(c) As an interesting aside, how far would we get with regular demand?

Recall that the optimal tax problem gives us the expression:

n∑
i=1

ti
∂xi

∂qk

The line integral for regular demand would give us:

xk(p
∗ + t) − xk(p

∗) =
n∑

i=1

∫
σi

∇xkds
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=
n∑

i=1

ti
∂xk

∂qi

The two expressions are not the same. Regular demand need not have the
kind of symmetry that would allow us to convert the latter expression into
the former. So, we cannot use the latter to interpret the former.

The potential lack of symmetry reflects the fact that the vector of regular
demands, (x0, ..., xn), is not itself the gradient of something. In particular
it is not the gradient of indirect utility. This is (−αx0, ...,−αxn), where α
is the marginal utility of income.

(d) Using all of the earlier results:

xc
k(p

∗ + t, U∗) − xc
k(p

∗, U∗)
xc

k(p
∗ + t, U∗)

=

∑n
i=1 Skiti

xc
k(p

∗ + t, U∗)
= −θ < 0, k = 1, ..., n

It follows that, for any pair of goods k and l:

xc
k(p

∗ + t, U∗) − xc
k(p

∗, U∗)
xc

k(p
∗ + t, U∗)

=
xc

l (p
∗ + t, U∗) − xc

l (p
∗, U∗)

xc
l (p

∗ + t, U∗)

This gives the Ramsey rule:

If all Sij are constant in the relevant range, then if t is an optimal
commodity tax vector, then eliminating all taxes should cause an
equal percentage change in the compensated demand for all goods.

Notice that the post-tax situation is the reference point since this is used
in the denominator. Technically the change is from the post-tax vector to
the pre-tax vector, not the other way around.

(e) In general, optimal taxation implies intervening in every market and at a
different tax rate.

This leads to a presumption against the efficiency of broad based taxes.

On the other hand, there are models of government behavior (positive
political economy) that suggest that real governments should perhaps be
restricted to broad based taxes since they choose rates to solve a different
problem from the one stated above.

(f) The formula should not be interpreted as saying that, in the real world,
necessities “should” be heavily taxed. The real world has many additional
properties including the fact that there is more than one person. While
the presumption is that there would be an efficiency loss from not taxing
necessities, there may be an equity gain that produces a net gain in social
welfare.

(g) Since compensated demand for good k depends on all prices, it is not true
that goods that are more own-price inelastic necessarily get higher taxes.
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However, if we assume that these cross effects are zero, then we do obtain
this result.

8. Inverse elasticity rules

(a) Version for Compensated Demand

i. Recall from the theory of the consumer Hicks’ three laws:

Sik = Ski

Skk < 0
n∑

i=0

Sikqi = 0

The last follows immediately from the fact that compensated demand
curves are homogeneous of degree zero in prices.

ii. The last two imply that we cannot assume that all cross effects are
zero. For example, if there are just two goods “0” and “1”, they must
be Hicksian substitutes (S01 > 0).
However, there is no contradiction in assuming that the only cross
effects that are nonzero are with the numeraire. Thus:

Sik = 0, i = 1, ..., n, k = 1, ..., n, i �= k
n∑

i=0

Sikqi = Skkqk + S0k = 0, k = 1, ..., n

iii. This is a substantive behavioral assumption about cross effects with
a particular good. It may be more empirically reasonable for some
goods than others. The choice of numeraire “matters” if we are going
to express a behavioral restriction in terms of it.

iv. The derivation of the Ramsey rule gave us for good k:
n∑

i=1

tiSik = −θxc
k, k = 1, ..., n

If the only cross effects are with the numeraire, then:

tkSkk = −θxc
k, k = 1, ..., n

Rewriting Skk as the derivative of compensated demand and multiply-
ing both sides by qk gives:

∂xc
k

∂qk

qk

xc
k

≡ εc
kk = −θ

qk

tk

The elasticity is independent of all prices other than qk, and it is
evaluated at post-tax prices and post-tax utility U∗.
Taking reciprocals and using qk = p∗k + tk:

1

εc
kk

= −1

θ

tk

p∗k + tk
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Thus:
1

−εc
kk

=
1

θ

tk

p∗k + tk
> 0

and the right hand side is increasing in tk. It follows that the smaller
the absolute value of the compensated demand elasticity (the “steeper”
the compensated demand curve) the higher the optimal tax rate:

tk ∝ 1

−εc
kk

(b) Version for Regular Demand

i. We start with the (perfectly reasonable) assumption that own-price
effects are non-zero:

∂xk

∂qk
�= 0

With CRS demands are homogenous of degree zero in prices, so:
n∑

i=0

∂xk

∂qi
qi = 0

Again, we cannot also assume that all cross effects are zero.

ii. As before, we can as a logical (as opposed to empirical) matter assume
that the only cross effects that are non-zero are with the numeraire.
Thus:

∂xk

∂qi
= 0, i = 1, ..., n, k = 1, ..., n, i �= k

n∑
i=0

∂xk

∂qi
qi =

∂xk

∂qk
qk +

∂xk

∂q0
= 0

iii. The derivation of the Ramsey rule gave us for good k:
n∑

i=1

ti
∂xi

∂qk
= −

(
λ − α

λ

)
xk, k = 1, ..., n

With the restriction above this reduces to:

tk
∂xk

∂qk

= −
(

λ − α

λ

)
xk, k = 1, ..., n

The same manipulations as above will then give:

tk ∝ 1

εkk
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